Daqarta
Data AcQuisition And Real-Time Analysis
Scope - Spectrum - Spectrogram - Signal Generator
Software for Windows
Science with your Sound Card!
The following is from the Daqarta Help system:

Features:

Oscilloscope

Spectrum Analyzer

8-Channel
Signal Generator

(Absolutely FREE!)

Spectrogram

Pitch Tracker

Pitch-to-MIDI

DaqMusiq Generator
(Free Music... Forever!)

Engine Simulator

LCR Meter

Remote Operation

DC Measurements

True RMS Voltmeter

Sound Level Meter

Frequency Counter
    Period
    Event
    Spectral Event

    Temperature
    Pressure
    MHz Frequencies

Data Logger

Waveform Averager

Histogram

Post-Stimulus Time
Histogram (PSTH)

THD Meter

IMD Meter

Precision Phase Meter

Pulse Meter

Macro System

Multi-Trace Arrays

Trigger Controls

Auto-Calibration

Spectral Peak Track

Spectrum Limit Testing

Direct-to-Disk Recording

Accessibility

Applications:

Frequency response

Distortion measurement

Speech and music

Microphone calibration

Loudspeaker test

Auditory phenomena

Musical instrument tuning

Animal sound

Evoked potentials

Rotating machinery

Automotive

Product test

Contact us about
your application!

Fcal Dialog

Controls: Options >> Frequency Counter >> Fcal
Macro: FcalDlg

Fcal stands for "Frequency Calibration". This button opens a dialog that allows frequency-output sensors, or sensors plus voltage-to-frequency (V-F) converters, to display directly in the proper units. It also allows for operation with an external prescaler to provide direct reading of frequencies much higher than a sound card can handle.

Note that the Fcal button is only enabled in Hertz, RPM, and msec counter modes.

Sound cards typically don't respond to frequencies below a few hertz, so they are useless with DC or slowly-changing signals like temperature and pressure. To get around this, a V-F converter may be used to produce a frequency that is proportional to the sensor output. (But see also DC Measurements And Outputs for ways to get true DC input response from your sound card.)

For example, a typical precision temperature sensor chip (LM335) produces an output of 10 mV per degree Kelvin, resulting in 2.73 V at 273 Kelvin (0 Celsius) and 3.73 V at 373 Kelvin (100 Celsius). If it drives a V-F that produces 1 kHz per volt, then these voltages will be converted to 2730 and 3730 Hz (typically rectangular waves). Such signals are easily handled by all sound cards, and can easily be read by the Frequency Counter.

Now if your ultimate goal is only to read degrees Kelvin, you could use this setup as described and mentally keep track of the decimal point. But if you would rather read Celsius, you might at first think you could just use a simple voltage divider to reduce the voltage to the V-F, and add a fixed offset voltage such that 2.73 V produced 0 Hz, and 3.73 V produced 1000 Hz.

This would actually work, within limits. Since the V-F produces rectangular waves that have sharp (high frequency) edges, those edges would be readily accepted by the sound card and Daqarta could trigger on them even at very low frequencies. As the temperature got closer to 0 C, the time between pulses would get longer and longer, and eventually they would stop altogether at 0.

If the temperature fell still farther, the V-F would see a negative input voltage and most likely do nothing. But even if it produced the mathematically-correct "negative frequency", the sound card (and hence the Frequency Counter) could not distinguish it from a positive frequency.

The Fcal dialog offers a simple solution: You can use the original V-F setup, and just specify that 3730 Hz should display as 100.00, and 2730 should display as 0.00. Linear interpolation/extrapolation is used for other values, so 1730 Hz would display as -100.00.

Better yet, you can set this up to allow a single Units button to toggle between Celsius and Fahrenheit, which will also show 'C' or 'F' after the display value.

The Fcal dialog also supports nonlinear sensors like thermocouples, by means of calibration tables. Tables for all standard thermocouple types are included with Daqarta, and you can easily create custom tables for other sensors.


Macro Notes:

FcalDlg=1 opens the Fcal dialog, FcalDlg=0 closes it, and FcalDlg=x toggles between open and closed.

Note that the Fcal dialog can only be opened if the Frequency Counter dialog (FcountDlg) is already open, and the Fcal dialog is closed automatically whenever the Frequency Counter dialog is closed.

Note that you do not need to open the Fcal dialog to change its controls directly via macro commands. However, separate Fcal values are maintained for each Trigger Source channel and valid Frequency Counter mode. (Only Hertz, RPM, and msec modes are supported for Fcal.) You must make sure the desired Trigger Source and counter mode are set in order to change the relevant Fcal controls.


See also Frequency Counter

GO:

Questions? Comments? Contact us!

We respond to ALL inquiries, typically within 24 hrs.
INTERSTELLAR RESEARCH:
Over 30 Years of Innovative Instrumentation
© Copyright 2007 - 2017 by Interstellar Research
All rights reserved